Adaptive optics performance model for optical interferometry.

نویسندگان

  • D Mozurkewich
  • S R Restaino
  • J T Armstrong
  • G C Gilbreath
چکیده

The optical interferometry community has discussed the possibility of using adaptive optics (AO) on apertures much larger than the atmospheric coherence length in order to increase the sensitivity of an interferometer, although few quantitative models have been investigated. The aim of this paper is to develop an analytic model of an AO-equipped interferometer and to use it to quantify, in relative terms, the gains that may be achieved over an interferometer equipped only with tip-tilt correction. Functional forms are derived for wavefront errors as a function of spatial and temporal coherence scales and flux and applied to the AO and tip-tilt cases. In both cases, the AO and fringe detection systems operate in the same spectral region, with the sharing ratio and subaperture size as adjustable parameters, and with the interferometer beams assumed to be spatially filtered after wavefront correction. It is concluded that the use of AO improves the performance of the interferometer in three ways. First, at the optimal aperture size for a tip-tilt system, the AO system is as much as ~50% more sensitive. Second, the sensitivity of the AO system continues to improve with increasing aperture size. And third, the signal-to-noise ratio of low-visibility fringes in the bright-star limit is significantly improved over the tip-tilt case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional adaptive microscopy using embedded liquid lens.

We report on the compact optical design of a high-resolution 3D scanning microscope with adaptive optics capability for refocusing with no moving parts designed for clinical research. The optical aberrations arising from refocusing are compensated for as part of the multiconfiguration optical design process. The lateral scanning is provided by a scanning mirror, and the depth scan is provided b...

متن کامل

Performance and Evaluation of Interferometric based Wavefront Sensors

Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wavefront distortions. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion. An AO system basically consists of three main components, a wavefront sensor, a wavefront corrector and a control system. A new wavefront sen...

متن کامل

Modern optical astronomy: technology and impact of interferometry

The present ‘state of the art’ and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth’s atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation...

متن کامل

Measuring nanoparticle size using optical surface profilers.

Optical surface profilers are state-of-the-art instruments for measuring surface height profiles. They are not conventionally applied to nanoparticle measurements due to the presence of diffraction artifacts. Here we use a theoretical model based on wave-optics to account for diffraction-based artifacts in optical surface profilers. This then enables accurate measurement of nanoparticles size o...

متن کامل

Ray-tracing and Interferometry in Schwarzschild Geometry

Here, we investigate the possible optical anisotropy of vacuum due to gravitational field. In doing this, we provide sufficient evidence from direct coordinate integration of the null-geodesic equations obtained from the Lagrangian method, as well as ray-tracing equations obtained from the Plebanski’s equivalent medium theory. All calculations are done for the Schwarzschild geometry, which resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 46 20  شماره 

صفحات  -

تاریخ انتشار 2007